
Energy Minimization on Heterogeneous
Systems through Approximate Computing

Michalis Spyrou, Christos Kalogirou, Christos Konstantas, Panos Koutsovasilis,
Manolis Maroudas, Christos D. Antonopoulos 1 and Nikolaos Bellas

Centre for Research and Technology Hellas - CERTH
Department of Electrical and Computer Engineering, University of Thessaly

e-mail: {mispyrou, hrkalogi, hriskons, pkoutsovasilis, emmmarou, cda,
nbellas}@uth.gr

Abstract. Energy efficiency is a prime concern for both HPC and con-

ventional workloads. Heterogeneous systems typically improve energy
efficiency at the expense of increased programmer effort. A novel, com-

plementary approach is approximating selected computations in order

to minimize the energy footprint of applications. Not all applications
or application components are amenable to this method, as approxima-

tions may be detrimental to the quality of the end result. Therefore the

programmer should be able to express algorithmic wisdom on the im-
portance of specific computations for the quality of the end-result and

thus their tolerance to approximations.

We introduce a framework comprising of a parallel meta-programming
model based on OpenCL, a compiler which supports this programming

model, and a runtime system which serves as the compiler backend. The
proposed framework: (a) allows the programmer to express the relative

importance of different computations for the quality of the output, thus

facilitating the dynamic exploration of energy / quality tradeoffs in a
disciplined way, and (b) simplifies the development of parallel algorithms

on heterogeneous systems, relieving the programmer from tasks such as

work scheduling and data manipulation across address spaces.
We evaluate our approach using a number of real-world applications,

beyond kernels, with diverse characteristics. Our results indicate that

significant energy savings can be achieved by combining the execution on
heterogeneous systems with approximations, with graceful degradation

of output quality.

Keywords. Energy Saving, Approximate Computing, Programming
Model, Controlled Quality Degradation, Heterogeneous Systems

Introduction

Energy efficiency is a primary concern when designing modern computing sys-
tems. Moving to the multicore era allowed architects to exploit increasing transis-

1Corresponding Author: Christos D. Antonopoulos, Assistant Professor, Department of
Electrical and Computer Engineering, University of Thessaly, Greece; E-mail: cda@inf.uth.gr

URL: http://www.inf.uth.gr/˜cda

tor counts by implementing additional cores. However, the end of Dennard scal-
ing [3] limits expectations for energy efficiency improvements in future devices by
manufacturing processors in lower geometries and lowering supply voltage. Tradi-
tional hardware / system software techniques, such as DFS and DVFS also have
their limitations when it comes to CPU intensive workloads.

Heterogeneous systems appeared as a promising alternative to multicores and
multiprocessors and dominate the Top500 [10] and Green500 [4] HPC lists. They
offer unprecedented performance and energy efficiency for certain classes of work-
loads, however at significantly increased development effort: programmers have
to spend significant effort reasoning on code mapping and optimization, synchro-
nization, and data transfers among different devices and address spaces.

One contributing factor to the energy footprint of current software is that
all parts of the program are considered equally important for the quality of the
final result, thus all are executed at full accuracy. However, as shown by previous
work on approximate computing [2,16,19], several classes of applications include
blocks of computations that do not affect the output quality significantly. Non-
significant computations can often tolerate approximations or even substitution
by a default value.

In this paper we introduce a directive-, task-based meta-programming model
on top of OpenCL [20], which allows programmers to: (a) express their insight on
the importance of different parts of the computation for the quality of the end-
result, (b) provide alternative, approximate versions of selected computations,
(c) control the ratio of approximate / accurate computations executed, and thus
the energy / quality tradeoff using a single knob, and (d) exploit heterogeneous,
accelerator-based systems, without many of the development overheads typically
associated with such systems. To the best of our knowledge this is the first time
a single programming model offers support for approximate execution on het-
erogeneous, accelerator-based systems. For our experiments we use a number of
real-world applications from different domains, with diverse characteristics. We
discuss approximation techniques that fit each application, and we apply appro-
priate metrics to evaluate the output quality. We find that, by exploiting appli-
cation specific high level information among proper device and ratio selection, we
can approximate the output with acceptable quality, while considerably reducing
the energy footprint of the application.

The rest of this paper is organized as follows: Section 1 presents the key fea-
tures of our programming model and Section 2 discusses the runtime implementa-
tion, highlighting its fundamental design decisions. Section 3 presents the appli-
cations used to evaluate our programming model and the heterogeneous platform
we used for the evaluation, whereas in Section 4 we present and discuss evaluation
results. Related work is discussed in Section 5 and Section 6 concludes the paper.

1. Programming Model

The programming model we introduce adopts a task-based paradigm, using
#pragma directives to annotate parallelism and approximations. Tasks are imple-
mented as OpenCL kernels [20], facilitating execution on heterogeneous systems.

The main objectives of the programming model are to allow (a) flexible execution
on heterogeneous systems, without overwhelming the programmer with low-level
concerns, such as inter-task synchronization, scheduling and data manipulation,
and (b) flexible exploration by the user of the quality / energy tradeoff at run-
time, using a single knob and exploiting developer wisdom on the importance of
different parts of the code for the quality of the end-result.

Listing 1 summarizes the #pragma task and taskwait directives used for task
manipulation. Listing 2 outlines the implementation of Discrete Cosine Transform
(DCT), which serves as a minimal example to illustrate the use of the main
programming model concepts. Below we explain each directive and clause referring
to this DCT example as appropriate.

1 #pragma ac l task [approxfun (func t i on)] [s i g n i f i c a n t (expr)] [l a b e l (”name”)] \
2 [in (v a r l i s t)] [out (v a r l i s t)] [inout (v a r l i s t)] \
3 [d e v i c e i n (v a r l i s t)] [d ev i c e out (v a r l i s t)] \
4 [d ev i c e i nou t (v a r l i s t)] [bind (dev i c e type)] \
5 [workers (i n t e x p r l i s t)] [groups (i n t e x p r l i s t)] \
6 ac cu ra t e t a sk imp l (. . .) ;
7 #pragma ac l taskwait [l a b e l (”name”)] [r a t i o (double)]

Listing 1 Pragma directives for task creation/completion.

1 k e r n e l void dctAccurate (double ∗ image , double ∗ r e su l t , i n t subblock) { }
2 k e r n e l void dctApprox (double ∗ image , double ∗ r e su l t , i n t subblock) { }
3
4 in t subblocks=2∗4 , subb lockS ize =4∗2 , b l o ckS i z e =32, imgW=1920 , imgH=1080;
5 /∗DCT block to 2x4 subblocks with d i f f e r e n t s i g n i f i c a n c e , image dimensions ∗/
6 double s g n f l u t [] = { 1 , . 9 , . 7 , . 3 ,
7 . 8 , . 4 , . 3 , . 1 } ;
8 void DCT(double ∗ image , double ∗ r e su l t , double s g n f r a t i o) {/∗ entry point ∗/
9 f o r (i n t id = 0 ; id < subblocks ; id++) { /∗spawn dct task group∗/

10 #pragma ac l task in (image) out(& r e s u l t [id ∗ subb lockS ize]) \
11 l a b e l (” dct ”) \
12 s i g n i f i c a n t (s g n f l u t [id]) approxfun (dctApprox) \
13 workers (b lockS ize , b l o ckS i z e) groups (imgW, imgH)
14 dctAccurate (image , r e su l t , id) ;
15 }
16 #pragma ac l taskwait r a t i o (s g n f r a t i o) l a b e l (” dct ”) /∗ execut ion b a r r i e r ∗/
17 }

Listing 2 Programming model use case: Discrete Cosine Transform (DCT) on blocks of an image.

The task directive (lines 10-13) defines a new task. It annotates the following
function call (line 14) as the task body which corresponds to an OpenCL kernel
(dctAccurate(), line 1) and specifies the accurate implementation of the task.

The approxfun() clause (line 12) allows the programmer to provide an alter-
native, approximate implementation of the task. This is generally simpler and less
accurate (may even return a default value in the extreme case), however has a
lower energy footprint than its accurate counterpart. For example, dctApprox(),
also defined as OpenCL kernel at line 2, sets all coefficient values equal to zero.
The actual call to the accurate version may be replaced at execution time by a
call to the approximate version, if present.

The significant() clause quantifies the relative significance of the computation

implemented by the task for the quality of the output, with a value (or expression)

in the range [0.0, 1.0]. If set to 1.0 or omitted, the runtime will always execute

the task accurately. If set to 0.0, the runtime will execute the task approximately,

or even discard it if an approximation is not available.

The DCT example defines each task’s significance at line 12, using values from

a lookup table (array sgnf lut[], line 6). Notice that tasks calculating coefficients

near the upper left corner of each block (low spatial frequencies) are more signifi-

cant (values in the sgnf lut[] array which are used to assign significance to tasks)

than those calculating coefficients which correspond to higher spatial frequencies.

This is due to the fact that the human eye is less sensitive to higher frequencies.

The programmer explicitly specifies the input and output arguments of each

task with the in(), out() and inout() data clauses (line 10). The corresponding in-

formation is exploited by the runtime system for dependence analysis and schedul-

ing, as well as for data management, as explained in Section 2. The device in(),

device out() and device inout() data clauses extend the above clauses by forcing

data transfers from/to device. We also support a subarray notation to express

data dependencies, in the form of array[i:i+size] in the spirit of OpenACC [14].

Expressing arguments in data clauses as subarrays further reduces unnecessary

data transfers.

The programmer can explicitly annotate a task for execution on a specific

device, using the bind() clause. This limits the flexibility of the programming

model, however it proves useful in case an implementation is optimized for a

specific device. To specify the work-items and work-groups geometry for kernel

execution, the programmer uses the workers() and groups() clauses as shown at

line 13, which follow the semantics of local- and global workgroup size of OpenCL,

respectively. Finally, the label() clause associates tasks with named task groups.

Each group is characterized by a unique string identifier. In our DCT example,

line 11 adds the newly created task to the ”dct” task group.

The taskwait directive specifies an explicit synchronization point, acting as a

computation and memory barrier. By default, taskwait waits on all issued tasks

so far, unless the label() clause is present, which limits the barrier to tasks of the

specific task group.

The ratio() clause accepts a value (or expression) ranging in [0.0, 1.0] as an

argument. It specifies the minimum percentage of tasks of the specific group that

the runtime should execute accurately. ratio is a single knob which allows the

programmer or the user to control the energy footprint / quality tradeoff. If ratio

is 0.0, the runtime does not need to execute any task accurately. Similarly, if ratio

is 1.0, all tasks need to be executed accurately regardless of their significance. In

our DCT example, line 16 waits for all tasks inside the ”dct” task group with a

user defined ratio.

The programming model is implemented in the context of a source-to-source

compiler, based on LLVM/Clang [8] and the LibTooling library. The compiler

lowers the #pragma directives to the corresponding runtime API calls.

2. Runtime Support

Figure 1. Runtime system architecture and typical task life cycle

Fig. 1 outlines the architecture of our runtime system. It is organized as a
master/slave work-sharing scheduler. For each device on the system, two threads
are created: (a) a memory transfers thread, responsible for transparent data trans-
fers between the host and the device, and (b) a task issue thread, responsible
for issuing tasks (implemented as OpenCL kernels) for execution to the corre-
sponding device. Our runtime reuses the underlying vendor OpenCL implemen-
tation for each device for data transfers, code execution, as well as to extract
system configuration information. The master thread executes the main program
sequentially and every task created is stored into a global pool (Fig. 1, step 1).

2.1. Data Flow Analysis - Scheduling & Memory Transfers

The runtime system can perform automatic data flow analysis at the granularity of
tasks, exploiting the information provided by the programmer via the data clauses
of each task. More specifically, upon task creation the runtime system tracks the
memory ranges read and written by each task. The results of this analysis are
exploited in two different ways: (a) to detect data dependencies among tasks and
enforce execution in the correct order, and (b) to automate memory transfers
among different address spaces of the heterogeneous system.

All task scheduling and data manipulation are transparent to the program-
mer. Overlaps between data ranges from data clauses of different tasks coexist-
ing in the system at any time, indicate potential WaW, RaW or WaR data de-
pendencies. The runtime identifies these dependencies and enforces execution of
inter-dependent tasks in the order they were spawned. Once all its dependencies
are resolved, a task is transferred to the ready queue (Fig. 1, step 2) and can be
selected for execution.

Devices can execute tasks from the global pool whenever they have resources
(execution units and memory) available, even if there are other tasks concurrently
executing on the device (Fig. 1, step 3). The runtime respects potential limitations
for task execution on specific devices specified by the programmer. If input data
for the task does not already reside in the device address space, they have to

be transferred before the task can be executed. The runtime system includes a
simple memory manager which tracks the location of each named object used
as an argument in any data clause, as well as the amount of available memory
on each device. The corresponding data structures are updated by the memory
transfers threads. When input data for a task are on the device memory, they can
be issued for execution (Fig. 1, step 5). Similarly, out() and device out() data are
transferred to the respective device when they are required as input for another
task, or to the host either at synchronization points, or whenever the memory
manager needs to reuse memory on the device (Fig. 1, step 7). The runtime tries
to overlap data transfers with computations when possible by prefetching data
for tasks to be executed while other tasks still keep the computational units of
the device busy. Given that data transfers typically incur significant overhead,
the scheduler associates tasks with devices according to data locality (beyond
resource availability). If a device, despite data affinity, has no free memory or
computational resources, the next available device is used.

2.2. Accurate / Approximate Task Execution

A newly created task includes the binaries of both accurate and approximate ver-
sions of the OpenCL kernels. When issuing the task for execution, the runtime
decides whether it will execute the approximate or the accurate version. More
specifically, the runtime observes the distribution of significance values assigned to
spawned tasks and heuristically and dynamically adjusts the significance thresh-
old beyond which tasks are executed accurately, with the target of achieving the
user-specified ratio of accurate/approximate tasks. Whenever a task is issued for
execution the runtime compares its significance to the current threshold and ex-
ecutes the appropriate implementation (accurate/approximate) accordingly.

2.3. Performance and Energy Monitoring

Information about energy, power and performance is collected during execution
by periodically polling the interfaces (hardware counters and libraries) offered by
each device. For example, for Intel CPUs, power is calculated by sampling energy
measurements using the RAPL [7] interface whereas for NVIDIA GPUs we use
the NVML [13] library. In order to monitor task execution times and the overhead
of memory transfers we exploit OpenCL events.

3. Applications - Approximation and Quality Estimation Case Studies

In order to validate our framework and quantify the quality / energy footprint
tradeoff on heterogeneous systems using realistic codes, we ported and evaluated
a number of real-world applications to our programming model. In the following
paragraphs we introduce these applications.

PBPI [5] is a high performance implementation of the Bayesian phylogenetic
inference method for DNA sequence data. It starts from random phylogenetic
trees and estimates the likelihood of them being realistic. The trees are then
modified and re-evaluated in an iterative evolutionary process. The tree with the

maximum likelihood is the output of the application. PBPI is quite sensitive to
errors and applying approximations is not a straightforward task. We introduce
an implementation where we randomly drop calculations for mutations with low
probabilities. We validate the approximate version by comparing the similarity of
the produced trees to those of the accurate version, using an algorithm for tree
comparison [12]. This quality metric takes into consideration both tree topology
and branch lengths.

Conjugate gradient (CG) is an iterative numerical solver for systems of linear
equations. The matrix form of these systems has to be symmetric and positive-
definite. The algorithm stops when it reaches convergence within a tolerance value,
or executes the maximum number of iterations requested by the user. In order
to approximate CG we used mixed precision: we perform computations of low
significance in single precision, while the rest are executed in double precision.
Given that the application is iterative, the number of iterations to convergence
depends on the method and degree of approximation. To quantify the quality
of the solution we use the relative error w.r.t. the result of the fully accurate
execution.

The SPStereo Disparity [22] application calculates a dense depth estimate
image from a stereo pair camera input. It consists of two parts: the first produces
an initial disparity image; the second exploits shape regularization in the form
of boundary length, while preserving connectivity of image segments to produce
the depth estimate image. The hotspot of the algorithm is the computation of
the initial disparity image. We approximate the disparity image computation by
relaxing synchronization between consecutive rows of pixels in the image. We
compare the image quality using the PSNR metric, with respect to the disparity
image produced by a fully accurate execution.

Bonds [6] is part of the QuantLib [1] library used in computational finance.
The application calculates the dirty price, clean price, accrued amount on a date
and the forward value of a bond2. We apply two different approximation tech-
niques. The first one uses mixed precision and fast-math functions for the cal-
culation of exponentials, while the second drops computations of the iterative
algorithm that computes the bond yield. The quality metric we use is the rela-
tive error of the computed forward price of the bond with respect to the value
computed by a fully accurate execution.

HOG [15] is a computer vision application for pedestrian detection using ma-
chine learning techniques. The input image is divided into independent blocks
that can be analyzed in parallel. A set of kernels is applied iteratively, in a pipeline
manner on each block. The first kernel creates a histogram of the gradients orien-
tation. Then it combines them into a descriptor and finally feeds it on a Support
Vector Machine (SVM) which classifies each block. We use an approximation ap-
proach that skips the histogram and SVM computations on some image blocks
in a round robin manner. We ensure that neighboring tasks have different sig-
nificance values, allowing the runtime to apply approximations uniformly to the
image. To assess quality, we calculate the percentage of overlap between bounding

2A bond is a loan that exists between an issuer and a holder. The issuer is obligated to pay

the holder the initial loan augmented by an interest.

(a) Relative energy consumption w.r.t. the
accurate CPU run.

(b) Performance overhead w.r.t. the
corresponding accurate OpenCL imple-
mentation.

(c) Relative quality of output w.r.t the
fully accurate execution.

Device Time (s) Energy (J) Quality metric

PBPI
CPU 72.20 11811 Tree similarity

(topology & branch length)GPU 104.00 11065

CG
CPU 83.00 16157 Relative error

wrt correct execution (%)GPU 48.00 4814

BONDS
CPU 2.02 471 Relative error

wrt correct execution (%)GPU 1.97 201

HOG
CPU 15.43 3820

Windows overlapping (%)
GPU 3.80 312

SPStereo MIXED 5.12 935 PSNR (dB)

(d) Baseline execution time and energy
consumption of fully accurate execu-
tions. We also report the quality metric
used for each application.

Figure 2.

windows of recognized pedestrians produced by the accurate and the approximate
versions.

4. Experimental Evaluation

The experimental evaluation was carried out on a dual-socket system equipped
with two Intel XEON E5 2695 processors, clocked at 2.3 GHz, with 128 GB
DRAM and an NVIDIA Tesla K80 GPU. The operating system is Ubuntu 14.04
server, using the 3.16 Linux kernel. The combination of two CPUs results to more
energy consumption than a single GPU in some applications despite comparable
execution times. The GPU power monitoring interface returns the instantaneous
power consumption polled every 2 ms. To estimate energy on GPU, we calcu-
late the integral of power in this time window of 2 ms, assuming constant power
within the window. On CPU, in order to calculate power, we monitor energy con-
sumption using the Running Average Power Limit (RAPL) [7] interface. Although
our evaluation system and runtime can handle execution on multiple GPUs, we
limit our profiling benchmarks only to one GPU chip of the K80, as most of the
applications we use do not offer enough parallelism to exploit both GPU chips.

We evaluate each application on different devices (CPU/GPU) and degrees of
approximation (fully accurate (ratio 1.0), fully approximate (ratio 0.0) and mixed

(ratio 0.5)). In the literature, approximation techniques have been typically eval-
uated at the granularity of computational kernels, and not on end-to-end appli-
cations. We focus on the energy efficiency and the total execution time of each
application, including data transfers between host and device. Fig. 2a depicts the
relative energy consumption of all cases compared with the energy consumption
of the accurate CPU execution for each application. Fig. 2c shows the quality
loss due to approximations. Note that the quality between different device types
for the same approximation degree remains the same for all applications in our
evaluation. Also the energy consumption of the fully accurate, pure OpenCL im-
plementation and the accurate run using our programming model is the same for
all applications, for both CPU and GPU executions. Table 2d outlines CPU/GPU
execution time and energy consumption for a fully accurate execution of each
application.

All applications exploit the features of our programming model such as de-
pendency analysis and automated data manipulation. We observe measurable en-
ergy gains in all applications ranging from 12% up to 43% due to approximations
only. Considering also the proper device selection, these percentages become 30%
and 90% respectively. We also observe that properly adjusting the ratio that con-
trols the degree of approximation, we can control the energy/quality tradeoff in a
controlled and straightforward manner. Both observations validate our approach.
On average our runtime adds a minimal performance overhead about 0.28% on
all applications except for PBPI and CG which are discussed below.

We notice that our runtime introduces an overhead of 15.7% (Fig. 2b) on
average for PBPI when compared with the pure OpenCL version. The reason is the
fine task granularity: PBPI creates about 100,000 tasks with an average execution
time of 1 ms each. The overhead is due to both the latency of the underlying
OpenCL implementation which notifies our runtime for task completion, and the
frequent calls to the data dependency resolver. Another interesting observation for
PBPI is that although GPU is slower than the CPU execution, the approximate
version consumes 30.2% and 19.2% less energy than the accurate and approximate
CPU execution respectively.

Our runtime also introduces an overhead of 9.1% on average in CG, again
due to the number and granularity of tasks (which are however coarser than in
the case of PBPI). GPU seems to gain more performance and saves more energy
because these devices are designed to execute single precision calculations – as
those used by the approximate version of the implementation – efficiently. CG
has an energy gain of 76.9% on the approximate GPU execution.

The SPStereo Disparity accurate version suffers from sequential dependencies
across consecutive rows of the image, limiting parallelism. In contrast, the ap-
proximate version due to the alleviation of dependencies is highly parallel and can
easily benefit from running on GPU. Thus this application makes appropriate use
of both GPU and CPU task bindings, a feature our programming model offers out
of the box. The PSNR of the images produced by the approximate execution is in
the range of 36 dB, indicating extremely high quality. Therefore, the approximate
version offers an excellent trade-off between performance, energy efficiency (up to
43%) and quality of output. Although the PSNR value of the accurate run is –
by definition – infinity, for visualization purposes in Fig. 2c we limit it to 41 dB.

In Bonds, we run a number of experiments with different input sets, using
combinations of the available input variables such as issue date, maturity data
and coupon rate for the bond. The application appears to benefit from execution
on a GPU, facilitated by our programming model, although the difference with
CPU is quite small. Bonds uses demanding operations (like exponential) in which
CPU thrives against GPU. Using both approximation techniques, we introduce
a quality loss of 1%, in favor of energy gains up to 14.7% in CPU and 11.8% in
GPU w.r.t the accurate CPU and GPU executions respectively.

In HOG approximations result to some quality loss, which is mainly due to
unrecognized pedestrians when they are smaller than the block size. Energy gains
correlate with image sizes and not with the content. The highest energy gain with
respect to the CPU accurate version is 90% and comes from the GPU approxi-
mate version. Our programming model results to a better execution time on both
CPU and GPU than pure OpenCL, because it automatically exploits all oppor-
tunities for minimization of data transfers and their overlap with computations.
The energy gain from running the approximate versions is 13% for GPU and 14%
for CPU compared with the corresponding GPU and CPU accurate executions.

5. Related work

Green [2] supports energy-conscious programming using controlled approximation
while providing guaranteed QoS. Ringenburg et al. [17] propose an architecture
and tools for autotuning applications, that enable trading quality of results and
energy efficiency. They assume, however, approximations at the hardware level.
EnerJ [19] introduces an approximate type system using code annotations with-
out defining a specific programming and execution model. ApproxIt [23] approx-
imates iterative methods at the granularity of one solver iteration. Variability-
aware OpenMP [16] also follows a #pragma-based notation and correlates par-
allelism with approximate computing. Quickstep [11] is a tool that parallelizes
sequential code. It approximates the semantics of the code by altering data and
control dependencies. SAGE [18] is a domain-specific environment with a compiler
and a runtime component that automatically generates approximate kernels for
image processing and machine learning applications. GreenGPU [9] dynamically
splits and distributes workloads on a CPU-GPU heterogeneous system, aiming to
keep busy both sides all the time, thus minimizing idle energy consumption. It
also applies DFS for the GPU core and memory for maximizing energy savings.
Tsoi and Luk [21] estimate performance and power efficiency tradeoffs to identify
optimal workload distribution on a heterogeneous system.

Our work introduces the concept of computation significance as a means to
express programmer wisdom and facilitate the controlled, graceful quality degra-
dation of results in the interest of energy efficiency. We support approximate com-
puting in a unified, straightforward way on different devices of accelerator-based
systems, thus exploiting and combining energy efficiency benefits from both het-
erogeneity and approximation. Our approach does not require hardware support
apart from what is already available on commodity processors and accelerators.

6. Conclusions

We introduced a framework which allows the programmer to express her wisdom
on the importance of different computations for the quality of the end result,
to provide approximate, more energy efficient implementations of computations
and to control the quality / energy efficiency tradeoff at execution time, using a
single, simple knob. In addition, our framework allows execution on heterogeneous
systems and alleviates some technical concerns, such as computation scheduling
and data management, which limit the programmer productivity. We evaluated
our approach using a number of real-world applications and found that exploiting
the concept of significance at the application level enables measurable energy
gains through approximations, while the programmer maintains control of the
quality of the output.

It should be noted that software-level approximate computing, as discussed in
this paper, is orthogonal to energy efficiency optimizations at the hardware-level.
Therefore, our approach can be applied on a wide range of existing and future
systems, spanning the range from HPC architectures to embedded systems.

Acknowledgements

This work has been supported by the ”Aristeia II” action (Project ”Centaurus”)
of the operational program Education and Lifelong Learning and is co-funded by
the European Social Fund and Greek national resources.

References

[1] F. Ametrano and L. Ballabio. Quantlib-a free/open-source library for quantitative finance.
Availabl e: http://quantlib. org/(visited on 04/29/2014), 2003.

[2] W. Baek and T. M. Chilimbi. Green: A framework for supporting energy-conscious pro-

gramming using controlled approximation. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’10, pages 198–

209, New York, NY, USA, 2010. ACM.

[3] M. Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. Solid-State Circuits
Society Newsletter, IEEE, 12(1):11–13, Winter 2007.

[4] W.-c. Feng and K. W. Cameron. The green500 list: Encouraging sustainable supercom-
puting. Computer, 40(12):50–55, 2007.

[5] X. Feng, K. W. Cameron, and D. A. Buell. Pbpi: A high performance implementation of

bayesian phylogenetic inference. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[6] S. Grauer-Gray, W. Killian, R. Searles, and J. Cavazos. Accelerating financial applications

on the gpu. In Proceedings of the 6th Workshop on General Purpose Processor Using
Graphics Processing Units, pages 127–136. ACM, 2013.

[7] Intel. Intel 64 and ia-32 architectures software developer manual, 2010. Chapter 14.9.1.

[8] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,

Washington, DC, USA, 2004. IEEE Computer Society.
[9] X. Li. Power Management for GPU-CPU Heterogeneous Systems. Master’s thesis, Uni-

versity of Tennessee, 12 2011.

[10] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top 500 list. Electronically published

at http://www. top500. org, 2010.

[11] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential programs with statistical
accuracy tests. ACM Trans. Embed. Comput. Syst., 12(2s):88:1–88:26, May 2013.

[12] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou. Treejuxtaposer: Scalable
tree comparison using focus+context with guaranteed visibility. ACM Trans. Graph.,

22(3):453–462, July 2003.

[13] NVIDIA. NVML API Reference. http://docs.nvidia.com/deploy/nvml-api/index.html.
[14] OpenACC standard committee. The OpenACC Application Programming Interface, v2.0,

June 2013.

[15] V. Prisacariu and I. Reid. fastHOG-a real-time GPU implementation of HOG. Technical
Report 2310/9, Department of Engineering Science, Cambridge University, 2009.

[16] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini. A variability-aware openmp environ-

ment for efficient execution of accuracy-configurable computation on shared-fpu proces-
sor clusters. In Proceedings of the Ninth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, CODES+ISSS ’13, pages 35:1–35:10,

Piscataway, NJ, USA, 2013. IEEE Press.
[17] M. Ringenburg, A. Sampson, I. Ackerman, and L. C. D. Grossman. Monitoring and de-

bugging the quality of results in approximate programs. In Proceedings of the 20th Inter-
national Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS 2015), Istanbul, Turkey, March 2015.

[18] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. Sage: Self-tuning approxi-
mation for graphics engines. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-46, pages 13–24, New York, NY, USA, 2013.

ACM.
[19] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj:

Approximate data types for safe and general low-power computation. In Proceedings of

the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’11, pages 164–174, New York, NY, USA, 2011. ACM.

[20] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for hetero-

geneous computing systems. IEEE Des. Test, 12(3):66–73, May 2010.
[21] K. H. Tsoi and W. Luk. Power profiling and optimization for heterogeneous multi-core

systems. SIGARCH Comput. Archit. News, 39(4):8–13, Dec. 2011.
[22] K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient joint segmentation, occlusion

labeling, stereo and flow estimation. In ECCV, 2014.

[23] Q. Zhang, F. Yuan, R. Ye, and Q. Xu. Approxit: An approximate computing framework for
iterative methods. In Proceedings of the The 51st Annual Design Automation Conference

on Design Automation Conference, DAC ’14, pages 97:1–97:6, New York, NY, USA, 2014.

ACM.

